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We consider the melting behavior of nanoscale particles embedded in a crystalline solid.
Calculations of three-dimensional shapes following from a minimization of interfacial free
energy show that melt configurations depend on the melt volume fraction, particle shape, and
the relative energy densities of particle interfaces. Five members of the family of Wulff shapes
with cubic symmetry containing only {111} and {100} facets are studied in detail. Although
general trends are noted, the melting behavior is found to be complex and strongly dependent
on particle shape. We assume that the melt volume is located in one contiguous region. In such
a case, the driving force to replace high-energy facets decreases with the relative energy of
those facets. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
The melting behavior of particles embedded in the solid
state has implications in many material properties—for
instance, the mechanical integrity of a material at high
temperatures. Because the behavior of small particles of-
ten deviates from that of their bulk analogues, the topic
is one of academic, as well as practical, interest. Both the
melting temperature and melting behavior of a solid par-
ticle depends on its size [1], its shape, and the anisotropy
of its interfacial free energy density, γ (n̂) [2].

In the simplest case, the shape of an equilibrated par-
ticle of fixed volume is directly related to its γ (n̂). This
shape—the Wulff shape, W—is the shape that minimizes
the interfacial free energy of the particle at constant tem-
perature [3]. Embedded particles that have achieved their
W are frequently observed through methods of trans-
mission electron microscopy (TEM) [4]. Particles ob-
served in cubic systems often display the following two
characteristics: they are faceted, containing both {100}
and {111} facets in proportions dependent on the ratio
γ100/γ111; and they maintain a cube-on-cube orientation
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relationship with the embedding grain, meaning that the
crystal axes of the particle and grain are kept parallel.
(Throughout, γhkl denotes the interfacial free energy den-
sity of the {hkl} family of facets.)

Particles that melt at a temperature below the matrix
can be studied through in-situ TEM. Of interest for this
work, in-situ TEM has indicated that indium particles in
dilute aluminum alloys melt in distinct stages when the
particles are larger than a few nanometers and allowed to
equilibrate after each temperature increment [5–7]. The
stages are classified by which of the {111} and {100}
solid particle/solid matrix facets are replaced with melted
particle/solid matrix interface. Transitions between the
stages occur when the particle melt grows and moves
to new facets. To a first approximation, the position of
the particle/matrix interface remains fixed during melting,
and transitions between stages require the particle melt to
make, in some cases, large geometric rearrangements.

Recent investigations combining in-situ TEM with
a numerical analysis suggest that: (1) the stages ob-
served in previous studies are approximately followed by
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T A B L E I The ϒ value and relationship between facet free energies for
the five W of interest

Shape ϒ = γ100/γ111

Cube 0.577 ≈ 1√
3

√
3γ100 = γ111

Cuboctahedron 0.866 ≈
√

3
2 γ100 =

√
3

2 γ111

Truncated octahedron 1.000 γ100 = γ111

Truncated octahedron 1.155 ≈ 2√
3

√
3

2 γ100 = γ111

Octahedron 1.732 ≈ √
3 γ100 = √

3γ111

lead-indium particles embedded in dilute aluminum al-
loys, and (2) these stages are defined by configurations that
minimize interfacial free energy for a fixed melt volume
fraction, VM [8]. This work extends the numerical analysis
to consider the coupled effect of particle shape and inter-
facial free energy on the set of energy-minimizing melt
configurations. For simplicity, the analysis is confined to
the family of polyhedral shapes with cubic symmetry that
contain only {100} and {111} facets and differ in the ratio
ϒ = γ100/γ111. This family extends from a cube, which
occurs for ϒ ≤ 0.577, to an octahedron (ϒ ≥ 1.732).
Five members of the family, shown in Fig. 1, are pre-
sented here: a cube of ϒ = 0.577, the cuboctahedron
(ϒ = 0.866), an energetically simple truncated octahe-
dron (ϒ = 1), a truncated octahedron approximating the
shape often observed for lead particles in dilute aluminum
alloys (ϒ = 1.155) [9], and an octahedron (ϒ = 1.732).
As shown in Table I, these values for ϒ produce a sys-
tematic, informative study.

2. Computational methods
2.1. Assumptions
Five interfaces, labeled (a)–(e) in Fig. 2, were neces-
sary for the calculations. Two, (a) and (b), are between
solid particle and solid matrix facets; two, (c) and (d),
are between melted particle and solid matrix facets; and
one, (e), separates the solid and melted portions of the
particle. The following relative interfacial free energies

T AB L E I I Contact angles between melt and both {100} and {111}
matrix facets for each shape. These angles follow from the fixed set of free
energy ratios applied in the calculations

ϒ θM/100 (◦) θM/111 (◦)

0.577 80.03 N/A
0.866 74.94 72.54
1.000 72.54 72.54
1.155 69.73 72.54
1.732 N/A 72.54

where fixed:

γ100 = ϒγ111 γM/100 = 9

10
γ100

γM/111 = 9

10
γ111 γM = 1

3
γ111

where γhkl refers to the solid particle/solid matrix inter-
facial free energy density, γM/hkl refers to that of the
melted particle/solid matrix, and γM refers to that of the
solid/melted particle. These values were selected to pro-
duce results that follow observed melting behavior (dis-
cussed below) while avoiding numerical instabilities that
occur when the conditions for perfect wetting are met.
As in [8], the solid/melted particle interface is called the
internal melt interface.

Table II provides a physical interpretation of the relative
energy densities, listing the contact angle between a drop
of particle melt and a {100} matrix facet and that between
a drop and a {111} facet for each ϒ . Two observations can
be made from a cursory glance at the table: (1) the contact
angles are close to 90◦, and (2) the particle melt/solid
matrix interfacial free energy is taken to be anisotropic.
Both assumptions follow from TEM observations of Pb
and In particles in Al. For (1), contact angle measurements
have shown that the melted particle/solid matrix interface
has a free energy density that is not too different from
the incoherent solid particle/solid matrix interface [7, 8].
For (2), weak anisotropy of melted Pb particle/solid Al

Figure 1 The five particle shapes used in this study are members of a family of shapes extending from a cube to an octahedron. The five shapes are: a cube
(ϒ = 0.577), the cuboctahedron (0.866), two truncated octahedra (1 and 1.155), and an octahedron (1.732). As ϒ increases, the {100} facet free energy
becomes so large that the size of the {100} facets decreases and the distance between {100} facets increases.
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Figure 2 (Left) The truncated octahedra of ϒ = 1.155 is used as an example to indicate which facets are {111} (here perfect hexagons) and which are
{100} (squares). (Right) The five interfaces: (a) solid particle/solid matrix {100}, (a) solid particle/solid matrix {111}, (c) melted particle/solid matrix {100},
(d) meltedparticle/solid matrix {111}, and (e) solid particle/melted particle.

matrix interface has been established [10]. The fourth of
the above energy relationships was chosen to reflect the
small value that an interface separating a solid from its
melt generally takes [11].

The following additional assumptions have been made
to better isolate the effect of particle shape on melt
configuration. It is assumed that the particle volume
(melt + solid) is convex and completely enclosed by
{100} and {111} matrix facets, that the position of the
particle/matrix interface is fixed, that the internal melt in-
terface divides the particle into two contiguous regions,
that the internal melt interfacial free energy is isotropic,
and that the relative values of interfacial free energy do
not change during melting.

The last assumption is not generally valid because
the composition of the melt should change with grad-
ual changes in temperature. However, this assumption is
not too unreasonable, as it produces qualitative results that
agree with observations of particles melting in dilute Al
alloys [8].

2.2. Configurations
Details of the methods used to obtain the energy-
minimizing melt configurations are given elsewhere [8].
Briefly, the particle W were calculated with Wulffman
[12], and the equilibrium melt configurations were calcu-
lated as a function of the fraction of particle melted, VM ,
with the Surface Evolver [13].

To determine the “equilibrium melt trajectory” for each
ϒ—i.e., the sequence of melt configurations that, on in-
creasing VM , give the minimum interfacial free energy
with respect to all other configurations—several possi-
ble melt configurations were tested for each VM . Thirteen
configurations were tested for the cube, eighteen for the
shapes bounded by both {100} and {111} matrix facets,
and fourteen for the octahedron. Although more than eigh-
teen configurations are possible for each shape, the tests

were limited to those configurations for which interfacial
free energy minima were suspected. Among those tested,
less than half gave energy minima.

2.3. Stability
For a fixed VM , not all configurations were found to be
stable. Generally, changing VM leads to either a touching
instability, which occurs when the set of facets touched by
the melt changes, or a necking instability, which occurs
when the melt or solid divides so as to produce multiple
internal melt interfaces. When a configuration is stable,
it is metastable with respect to configurations giving a
lower total interfacial free energy, and it forms a por-
tion of the equilibrium melt trajectory when there are no
lower-energy configurations.

3. Results and discussion
The results differ slightly from those reported previously
[8] because, here, a different set of interfacial free ener-
gies has been applied, and melted particle/solid matrix
anisotropy has been introduced. The equilibrium melt tra-
jectory configurations for the cube are shown in Fig. 3,
and those for the cuboctahedron in Fig. 4. The truncated
octahedra share the same basic trajectory (Fig. 5) with
transitions between configurations for ϒ = 1.000 occur-
ring at different VM than those for ϒ = 1.155. Results for
the octahedron are shown in Fig. 6.

To compare the total interfacial free energy necessary
for a configuration, E , between shapes at a fixed VM , a
quantity that is independent of the particle’s size, E/V 2/3,
was used. The results are presented by first discussing
general trends and then reviewing the five particle shapes
individually.

3.1. General trends
The first trend to note, illustrated with the unmelted and
completely melted particles in Table III, is that E/V 2/3
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Figure 3 The melt trajectory of the cube consists of five configurations, shown below the plot of E/V 2/3 versus VM that was obtained with the 13
configurations tested for the cube. The configuration stable at the lowest VM becomes metastable with respect to other configurations at VM ∼ 0.12; the
metastable state at VM = 0.5 is indicated with point A and the stable state with B. A touching instability occurs at C.

Figure 4 The melt trajectory of the cuboctahedron consists of six configurations.

Figure 5 The melt trajectories of the two truncated octahedra share the same basic configurations, shown here for ϒ = 1.155.
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Figure 6 The melt trajectory of the octahedron consists of three configura-
tions. Calculations suggest that a configuration for which the melt replaces
two corners and portions of four {111} facets is in equilibrium with I and II
at the transition between I and II.

increases as ϒ increases. This result is due to the different
values of interfacial free energy assigned to facets of dif-
ferent ϒ . That is, E/V 2/3 is lower for shapes of smaller
ϒ because the total interfacial free energy of those shapes
is proportional to ϒ . The proportionality constant is de-
pendent on shape, however, because ϒ is the ratio of
interfacial free energy densities and does not directly in-
dicate the relative amounts of each type of interface—as
ϒ is increased from 0.577 to 1.732, the relative interfacial
free energy of {100} interface increases but the amount of
{100} interface decreases more quickly. If the interfacial
free energy densities were independent of facet orienta-
tion, one would find that E/V 2/3 would be largest for the
cube and lowest for a truncated octahedron with a slightly
smaller area fraction of {100} facets than the shape con-
structed for ϒ = 1.155 (see [8] appendix).

The second trend is that, for a given ϒ , there is a small
maximum in E with changes to VM before half of the par-
ticle has melted (VM < 1/2). Interfacial energy increases
at low VM because melting increases the total amount of
interface. Although the energy densities of the particle
melt interfaces are relatively low, they are not low enough
to compensate for this increase. Beyond the maximum,

T AB L E I I I The total interfacial free energy divided by the squared
cube root of the total (melt + solid) volume of the particle for each shape at
VM = 0 and VM = 1. The quantity increases with ϒ because it is dependent
on ϒ

ϒ

E/V 2/3

(Solid particle) E/V 2/3 (melted particle)

0.577 3.46 3.12
0.866 4.89 4.40
1.000 5.25 4.72
1.155 5.50 4.95
1.732 5.72 5.15

which occurs at the transition between configurations I
and II in Fig. 7, energy is eliminated because the melt
replaces increasingly more solid particle/solid matrix in-
terface for smaller (or negative) increments to the internal
melt interface.

As the last trends noted, the plot of E versus VM gener-
ally has negative concavity (d2 E/dV 2

M < 0) because the
decrease in energy due to the replacement of solid parti-
cle/solid matrix interfaces becomes more significant than
the increase in energy due to the creation of internal melt
interface as the melt grows. However, a plot of E versus
VM has positive concavity (d2 E/dV 2

M > 0) when chang-
ing VM changes the internal melt interface but does not
affect the amount of solid particle/solid matrix interface
replaced.1 Positive concavity indicates that it becomes in-
creasingly difficult to change melt volume fraction from
the VM giving the minimum in energy. Such a case occurs
when the melt interface is “pinned” at edges and corners of
the particle shape. For instance, when the melt is attached
to and completely replaces a {100} interface, additions to
the melt volume could cause the melt to grow toward the
particle center rather than migrate to neighboring facets.
TEM observations of a PbIn particle in Al show that such
“pinning” is not unusual, and an example is shown in
Fig. 7, where the melt is pinned at the corners of two ad-
jacent {100} facets. The calculation in this example uses
ϒ = 1.245, the value obtained from a micrograph of the
solid particle.

3.2. Case 1: The cube, ϒ = 0.577
The sequence of configurations comprising the melt tra-
jectory of the cube for ϒ = 0.577 was obtained from the
plot of E/V 2/3 versus VM in Fig. 3. As shown, each of
the five configurations gives the lowest energy curve for
a range of VM . Where curves cross, there is no driving
force to change from one to another of the configurations
described by those curves because they are energetically
equivalent. Each of the melt trajectory configurations be-
comes metastable when its energy becomes greater than
that of another. An example is shown at point A, which
appears at VM = 1/2 on the metastable extension of
configuration I. A melt at A would reduce its energy by
an amount proportional to the distance between A and
B by adopting the energy-minimizing configuration at
VM = 1/2. Configuration I can persist in a metastable
state with increments to VM until reaching a touching
instability at point C.

For the cube, the melt prefers a single corner for the
lowest melt volume fractions (VM < 0.12, I), two adja-
cent corners for 0.12 < VM < 0.28 (II), one face and
portions of the four abutting faces for 0.28 < VM < 0.64

1There are exceptions. For instance, when the melt exists as a sphere with
its origin at the particle’s center of gravity, it produces an energy curve of
negative concavity.
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Figure 7 (Left) An example of a “pinned” internal melt interface that corresponds to the micrograph of a melting PbIn particle in Al (right). For this case,
the calculated configuration was obtained for ϒ = 1.245, the aspect ratio measured from a TEM micrograph of a the solid PbIn particle.

(III), all but two adjacent corners for 0.28 < VM < 0.81
(IV), and all but one corner for 0.81 < VM (V). Eight
of the tested configurations do not form part of the melt
trajectory.

Configurations I and V, and configurations II and IV,
are closely related, differing only in which side of the in-
ternal melt interface that the melt is located and the details
of the internal melt interface shape. Such configurations
are called “inverses” of one another. Note that when one
configuration meets an instability at 0 < VM < 1 (indi-
cated in the plot by the termination of its energy curve),
its inverse does not generally meet an instability at 1−VM

because the contact angle between the internal melt inter-
face and melted particle/solid matrix facets is not 90◦. For
instance, configuration I exists for a larger range of VM

than its inverse (V) because the contact angle is less than
90◦. If the contact angle were larger than 90◦, configura-
tion V would have the larger range of stability.

In the limit of VM = 0, there is but one configura-
tion: the particle is completely solid. Here, a particle
of unit volume will have an interfacial free energy of
6 × 0.577 ≈ 3.46 (Table III). Similarly, for VM = 1, the
particle is completely melted, and a unit volume will have
an energy of approximately 3.12. As shown in Fig. 1, not
all configurations approach these limits smoothly. This
result occurs because particular configurations, e.g., III,
require that the melt replace a finite portion of solid par-
ticle/solid matrix interface.

Two additional features of the plot in Fig. 1 are dis-
cussed here. First, the energy curves describing config-
urations I and II change from negative to positive con-
cavity on increasing VM . These curves have inflection
points because, as the melt grows, previously unpinned
internal melt interface becomes pinned at corners in the
particle shape, giving the positive concavity discussed in
Section 3.1. The second feature is unique to the cube: there
is a configuration for which energy is linearly related to
changes in VM . The energy of configuration III decreases
linearly with increments in VM because the internal melt
interface maintains a constant shape, and additions to the
melt simply push the position of this interface into the

solid portion of the particle, replacing a fixed amount of
solid particle/solid matrix interface with each addition.

The results shown in Fig. 1 apply to a two-phase system
confined within a cubic cavity where the two phases are
separated by an isotropic interface. The results are sup-
ported by those from a study for which the two phases
are separated by an anisotropic interface that forms only
{100}-type facets [14]. In that study, the degree of partial
wetting between one phase and the walls of the cavity is
varied in addition to the volume fraction of that phase.
The study shows that, for the analogue of a contact angle
of ∼80◦, the phase takes a cube shape and sits in one
corner of the cube cavity for VM � 0.05, replaces two
adjacent corners and the edge connecting them (taking a
rod shape) for 0.05 � VM � 0.25, replaces one face and
portions of the four abutting faces (taking a slab shape) for
0.25 � VM � 0.7, forms the inverse to the rod-in-edge
configuration for 0.7 � VM � 0.9, and forms the inverse
to the cube-in-corner configuration for 0.9 � VM . It is
speculated that results from the study for other contact
angles can be used to predict the melt trajectory of a cube
particle for different degrees of wetting.

3.3. Case 2: The cuboctahedron, ϒ = 0.866
The cuboctahedron is interesting because the eight {111}
facets are equilateral triangles, the six {100} facets are
squares, and all corners join four facets. The only other
shape (in the family of W studied here) that shares the
latter trait is the octahedron, which joins four identical
facets. For the cuboctahedron, the majority of the total
interfacial area and total interfacial free energy comes
from the {100} facets.

Fig. 1 shows that six configurations comprise the cuboc-
tahedron’s equilibrium trajectory. The melt sits in one
corner for the lowest melt volume fractions (VM < 0.06,
I), replaces one {111} facet and portions of the six abut-
ting facets for 0.06 < VM < 0.26 (II), replaces one
{100} facet and portions of the eight abutting facets for
0.26 < VM < 0.42 (III), forms the inverse to configura-
tion III for 0.42 < VM < 0.62 (IV), forms the inverse to
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II for 0.62 < VM < 0.97 (V), and forms the inverse to I
for 0.97 < VM .

Like the cube, the equilibrium trajectory contains con-
figurations for which the melt sits in one corner and its
inverse. A corner configuration minimizes interfacial free
energy because, as melt volume is added to I, melt can
replace a large amount of solid interface for a relatively
small increase in internal melt interface. Although incre-
ments to the melt volume in configuration I and its inverse
give relatively small additions to the internal melt inter-
face, these configurations appear on the equilibrium melt
trajectory for smaller ranges of VM because the cubocta-
hedron trajectory has lower energy configurations that are
not possible in the cube.

The equilibrium trajectory of the cuboctahedron con-
tains a configuration that produces an unexpected se-
quence: configuration IV touches all but one {100} and
four {111} facets. Although the III–IV–V path minimizes
interfacial free energy on increasing VM , it does not fol-
low from common logic because it requires the melt to
retract from replaced interface. Such unexpected results
have been noted previously [8].

3.4. Cases 3–4: The truncated octahedra,
ϒ = 1 and 1.155

The equilibrium melt trajectory for the truncated octahe-
dra resembles that of the cuboctahedron. Fig. 1 illustrates
that the disparities are primarily due to particle shape.
There is a fundamental difference between cuboctahe-
dron melt configurations and truncated octahedron ones:
while {100} facets of the cuboctahedron meet at a corner,
those of the truncated octahedra are separated by a pair
of {111} facets. Hence, for the truncated octahedra, con-
figuration I puts the melt in a corner joining three, rather
than four, facets. There are intermediateVM configurations
that display greater similarity to those of the cuboctahe-
dron: configuration II replaces portions two {100} and
two {111} facets, and configuration III replaces one{111}
interface and portions of the six abutting facets. (Config-
urations V, VI, and VII are the inverses to configurations
III, II, and I, respectively.)

Results for the truncated octahedra demonstrate that
melt configurations preferred by the ratio of facet free
energies, ϒ , can differ from those preferred by the parti-
cle W that follows from ϒ . Consider the W for which
1 < ϒ < 1.732. The drive to selectively replace {100}
interface diminishes as ϒ →1.732. This occurs because,
although the interfacial free energy density of {100} inter-
face is greater, the relative contribution of {111} interface
to the total interfacial area and energy is larger, and it in-
creases with ϒ . The drive to replace {100} is also reduced
by the smaller areas of and larger distances between {100}
facets—melts of small VM attempting to replace multiple
{100} facets become increasingly susceptible to necking
instabilities. Consequently, replacing as much solid par-

ticle/solid matrix interface as possible becomes more im-
portant than maximizing the amount of the higher-energy
{100} interface replaced. The calculations support this re-
sult, showing, e.g., configurations II, IV, and VI to form
a smaller portion of the melt trajectory for ϒ = 1.155.

3.5. Case 5: The octahedron
The octahedron is bounded by eight {111} facets, meaning
that the melt can replace only one type of interface and,
as for the cube, melting behavior is the product of nothing
more than the particle’s shape and the contact angle that
the melt makes with the replaced facets. The trajectory
of configurations shown in Fig. 1 indicate that, for the
octahedron, the melt sits in a single corner for VM < 0.17
(I), replaces a full {111} and portions of the six abutting
facets for 0.17 < VM < 0.83 (II), and takes the inverse
of I for 0.83 < VM (III). Results for the octahedron
display a number of interesting features, three of which
are discussed below.

First, there is a configuration that appears to produce
(within numerical error) the same interfacial free energy
as configurations I and II at VM = 0.17 but does not
appear anyplace else on the equilibrium trajectory. This
configuration puts the melt into two adjacent corners, so
that it replaces portions of six facets. For VM < 0.17, the
configuration requires slightly more energy than I, and for
VM > 0.17, it requires slightly more than II. Because the
three configurations appear to be energetically equivalent
at VM = 0.17 and differences in energy between them are
relatively small at nearby VM , the probability of observing
the two-corner configuration (i.e., the melt in a metastable
state) is relatively large for VM near 0.17.

Second, the energy of configuration II decreases ap-
proximately linearly with VM . This result is interesting
because configuration II appears to mimic, energetically,
the behavior of the cube’s configuration III (Fig. 1). As
for the cube, growth of the melt in the octahedron’s con-
figuration II increases the amount of solid particle/solid
matrix replaced at a constant rate. However, the shape of
the internal melt interface does not remain constant—it
changes slightly as the melt grows due to modifications
in the shape of the boundary to which it is attached (i.e.,
unlike the cube, when moving along the vector 
v point-
ing from the center of one face to the octahedron’s center
of gravity, the cross section of the octahedron in a plane
perpendicular to 
v changes.)

Third, the transition from configuration II to configu-
ration III requires a jump in energy. That is, the energy
curve describing configuration II does not cross that of III
at VM = 0.83 but terminates at that VM because configu-
ration II reaches a touching instability. This jump implies
that it would be necessary to increase the driving force
for melting through, for instance, additional increments
in temperature, because extra energy must be supplied to
reach the next configuration in the melt trajectory. Al-
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ternatively, the change in melting temperature with melt
volume fraction should increase at this VM .

4. Conclusions
We have demonstrated that the melting behavior of small
particles embedded in the solid state depends on both
particle shape and the free energy densities of the inter-
faces that are present during melting. The equilibrium
melt trajectories for the five shapes considered result
from the interplay between shape geometry and the re-
lationship between the energy densities of five distinct
interfaces.

Because the particle shapes follow from ϒ through
the Wulff construction, the distance between facets is de-
pendent on their energy. Thus, for shapes containing both
{100} and {111} interface, the driving force to replace
the largest energy facets decreases as the relative energy
densities of those facets increases, as the contribution of
those facets to the total interfacial free energy diminishes
and a melt that preferentially replaces them necessitate
a significant amount of internal melt interface. Such a
melt is typically either unstable or metastable to other
configurations.
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